GraphBLAS: graph algorithms
In the language of linear algebra

Table of Contents

GraphBLAS: faster and more general sparse matrices for MATLAB ..., 1
SPArSE INTEJEN MEEIICES ...eeti ittt ettt et e et et a e e e e e e e et e e e e eaa e e eeaans 2
Sparse SINGIE-PreCiSION MELTCES .. ..ueiieit ettt ettt e et e et e e e et e e e enteaeeens 2
Mixing MATLAB and GraphBLAS MELICES ......uieiiiiiiieiiiii ettt 3
Faster MaLriX OPEIEIIONS .....c.uuueiiiti ettt ettt e et e et e e et e e e et b n e et et e e e eran e ens 4
A Wide range Of SEMITINGS ... ceeiiiieeiii ettt et e e a e e enaans 4
The Max.plus tropiCal SEMITING .......uuiiiiii e 5
A DOOIEAN SEMITING ...ttt e e et e et e e e e aan s 5
GraphBLAS operators, monoids, and SEMITINGS .........ueieerueeiiii it e et eeeri e eenin e 7
Element-WiSe OPEIELIONS .......uuuiiiiti ettt e e e et e et 10
SUDBLFACHING TWO MBEMICES ....eeeti ettt e et e et e et et e e et e e e e nb e e e eebanes 11
Element-wise "MUItipliCaIION" ........ouu i e 12
OVET0B0E OPEIALONS ..ottt ettt e ettt e e et et e e e e e bt e e e eete e e e eabanaeeene 13
OVET0B0EA TUNCHIONS ....oeeet et et e e e et et e e et et e e e ente e eeenes 15
Zeros are handled differently .........oooii e 16
Displaying contents of @ GraphBLAS MALMX ......coveviniiiiiiiieeiiie e 17
Storing a matrix by row or DY COIUMN .......uuiiii e 20
HYPEISPAIrSE MELICES ...ttt ettt e et e e et e e e e e e e e b 22
The Mask and BCCUMUIBLOT ...........uuiiiiii et 24
=N (= ol T o o PP PP 25
Integer arithmetic is different in GraphBLAS ......... oo e 26
An example graph algorithm: breadth-first search ... 27
Example graph algorithm: Luby's method in GraphBLAS ..ot 27
Sparse deeP NEUFEl NEEWOTK .........iiiiii et et e e e e eeaans 28
Solving the sparse deep neural network problem with GraphbLAS ...........oooiiiiiiiiiiieee, 29
Solving the sparse deep neural network problem with MATLAB ..., 29
Extreme performance differences between GraphBLAS and MATLAB. ....cooviiiiiiiiiiiiiiiieceiie, 30
Limitations and their fUtUre SOIULIONS ...........iiieiei e 30
GraphBLAS OPEIAHIONS ... eeeiiiee ettt ettt et et e et e e et e e e b e e e e ba s 36
List Of gD.MEINOAS .....vneiii et et e 36

GraphBLAS isalibrary for creating graph algorithms based on sparse linear al gebraic operations over semirings. Visit
http://graphblas.org for more details and resources. See also the SuiteSparse: GraphBLAS User Guidein this package.

SuiteSparse:GraphBLAS, (¢) 2017-2019, Tim Davis, Texas A&M University, http://faculty.cse.tamu.edu/davis

GraphBLAS: faster and more general sparse
matrices for MATLAB

GraphBLAS isnot only useful for creating graph algorithms; it al so supports awide range of sparse matrix
data types and operations. MATLAB can compute C=A*B with just two semirings: 'plus.times.double
and 'plus.times.complex’ for complex matrices. GraphBLAS has 1,040 unique built-in semirings, such as



http://graphblas.org
http://faculty.cse.tamu.edu/davis

GraphBLAS: graph algorithms
in the language of linear algebra

'max.plus’ (https://en.wikipedia.org/wiki/Tropical_semiring). These semirings can be used to construct a
wide variety of graph algorithms, based on operations on sparse adjacency matrices.

GraphBLAS supports sparse double and single precision matrices, logical, and sparse integer matrices:
int8, int16, int32, int64, uint8, uint16, uint32, and uint64. Complex matrices will be added in the future.

clear all

rng ('default"')

X =100 * rand (2)

G = gb (X % G aphBLAS copy of a matrix X, sanme type

2x2 GraphBLAS double matrix, standard CSC, 4 entries
(1,1) 81. 4724
(2,1) 90. 5792

(1,2) 12. 6987
(2,2) 91. 3376

Sparse integer matrices

Here's an int8 version of the same matrix:

S=int8 (Q % convert Gto a full MATLAB int8 matrix
G=gb (X, "int8") % a GraphBLAS sparse int8 matrix
S =

2X2 int8 matrix

81 12
90 91

2x2 GraphBLAS int8 t matrix, standard CSC, 4 entries

(1,1) 81
(2,1) 90
(1,2) 12
(2,2) 91

Sparse single-precision matrices

Matrix operationsin GraphBLAS are typically asfast, or faster than MATLAB. Here's an unfair compar-
ison; computing X2 with MATLAB in double precision and with GraphBLAS in single precision. You
would naturally expect GraphBLAS to be faster.




GraphBLAS: graph algorithms
in the language of linear algebra

spdi ags (rand (n, 201), -100:100, n, n) ;
gb (X, "single') ;

o I

X2 = Xr2

matlab_tinme = toc ;

fprintf ('\nG aphBLAS tine: % sec (in single)\n', gb_tine) ;

fprintf (' MATLAB tine: % sec (in double)\n', matlab_tine)

fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',
matlab_time / gb_time) ;

100000

GraphBLAS tine: 0.532322 sec (in single)
MATLAB ti me: 9.59964 sec (in double)
Speedup of G aphBLAS over MATLAB: 18. 0335

Mixing MATLAB and GraphBLAS matrices

The error in the last computation is about eps('single’) since GraphBLAS did its computation in single
precision, while MATLAB used double precision. MATLAB and GraphBLAS matrices can be easily
combined, asin X2-G2. The sparse single precision matrices take |ess memory space.

err = norm (X2 - &, 1) / norm(X2,1)
eps ('single')
whos G & X X2

1. 5049e- 07
ans =
single
1.1921e- 07
Nane Si ze Bytes d ass Attributes
G 100000x100000 241879772 gb
X 100000x100000 481518572 gb
X 100000x100000 322238408 doubl e sparse
X2 100000x100000 641756808 doubl e sparse




GraphBLAS: graph algorithms
in the language of linear algebra

Faster matrix operations

But even with standard double precision sparse matrices, GraphBLAS is typically faster than the built-in
MATLAB methods. Here's afair comparison:

G=gb (X ;
tic
@ = G2 ;

gb_time =toc ;
err = norm (X2 - &, 1) / norm(X2,1)
fprintf ("\nGaphBLAS tinme: % sec (in double)\n', gb_tinme) ;
fprintf (' MATLAB tine: %y sec (in double)\n', matlab_tinme) ;
fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',

matlab tinme / gb_tinme) ;

G aphBLAS tinme: 0.543849 sec (in double)
MATLAB ti me: 9.59964 sec (in double)
Speedup of G aphBLAS over MATLAB: 17.6513

A wide range of semirings

MATLAB can only compute C=A*B using the standard '+.* .doubl €' and '+.* .complex' semirings. A semi-
ring is defined in terms of a string, 'add.mult.type', where ‘add’ is a monoid that takes the place of the
additive operator, 'mult' is the multiplicative operator, and 'type' is the data type for the two inputs to the
mult operator (the type defaults to the type of A for C=A*B).

In the standard semiring, C=A*B is defined as:
Cli,j) =sum(A(i,:)." .* B(:,j))

using 'plus asthe monoid and 'times' as the multiplicative operator. But in amore general semiring, 'sum’
can be any monoid, which is an associative and commutative operator that has an identity value. For
example, in the 'max.plus' tropical algebra, C(i,j) for C=A*B is defined as:

Cli,j) = mx (A(i,:)." + B(:,j))
This can be computed in GraphBLAS with:

C=gb.nmxm (' max. +', A B).
n=3,
A = rand (n)
B = rand (n)
C = zeros (n)
for i = 1:n
for j = 1:n

Cli,j) =max (A(i,:)." +B(:,]))




GraphBLAS: graph algorithms
in the language of linear algebra

end
end
C2 = gb.mxm (' max.+ , A B) ;
fprintf ("\nerr = norm(CC2,1) = %\n", norm (CC2,1))

err = norm(CC2,1) =0

The max.plus tropical semiring

Here are details of the "max.plus’ tropical semiring. The identity valueis -inf since max(x,-inf) = max (-
inf,x) = -inf for any x.

gb.senmiringinfo (' max.+. double") ;

GraphBLAS Sem ring: nmax.+.double (built-in)

G aphBLAS Monoi d: semring->add (built-in)

G aphBLAS Bi naryQp: nonoi d->op (built-in) z=max(x,y)
GraphBLAS type: ztype double size: 8

GraphBLAS type: xtype double size: 8

GraphBLAS type: ytype double size: 8

identity: [ -inf ] termnal: [ inf ]

GraphBLAS Bi naryQp: semring->nultiply (built-in) z=plus(x,y)
GraphBLAS type: ztype double size: 8
GraphBLAS type: xtype double size: 8
GraphBLAS type: ytype double size: 8

A boolean semiring

MATLAB cannot multiply two logical matrices. MATLAB R2019a converts them to double and uses
the conventional +.*.double semiring instead. In GraphBLAS, thisisthe common Boolean ‘or.and.logical’
semiring, which iswidely used in linear algebraic graph algorithms.

gh.senmiringinfo ('|.& logical') ;

GraphBLAS Semiring: |.& logical (built-in)
GraphBLAS Monoi d: seniring->add (built-in)
GraphBLAS Bi naryQp: nonoi d->op (built-in) z=or(x,y)
GraphBLAS type: ztype bool size: 1

GraphBLAS type: xtype bool size: 1

GraphBLAS type: ytype bool size: 1

identity: [ 0] termnal: | 1]

GraphBLAS BinaryQp: semring->multiply (built-in) z=and(Xx,y)
GraphBLAS type: ztype bool size: 1
GraphBLAS type: xtype bool size: 1
GraphBLAS type: ytype bool size: 1

cl ear
A = sparse (rand (3) > 0.5)
B = sparse (rand (3) > 0.2)




GraphBLAS: graph algorithms
in the language of linear algebra

A =
3x3 sparse | ogical array

(2,1)
(2,2)
(3,2)
(1,3)

N A

B =
3x3 sparse | ogical array

(1, 1)
(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3,3)

RPRRPRRPRPRPRRRER

try
% MATLAB R2019a does this by casting A and B to double
Cl = A*B

catch
% MATLAB R2018a throws an error
fprintf (' MATLAB R2019a required for C=A*B with |l ogical\n')
fprintf ("matrices. Explicitly converting to double:\n")
Cl = double (A) * double (B)

end

C2 =gb (A * gb (B)

MATLAB R2019a required for C=A*B with | ogi cal
matrices. Explicitly converting to double:

cl1 =

(1, 1)
(2,1)
(3, 1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3,3)

PNRPRPNRPRRNER




GraphBLAS: graph algorithms
in the language of linear algebra

3x3 G aphBLAS bool matrix, standard CSC, 9 entries

(1, 1)
(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3,3)

RPRRPRRPRPRPRRRER

Note that C1lisa MATLAB sparse double matrix, and contains non-binary values. C2 is a GraphBLAS

logical matrix.
whos
gb.type (C2)
Narme Si ze Bytes d ass Attributes
A 3x3 68 | ogical spar se
B 3x3 113 | ogi cal spar se
c1 3x3 176 double spar se
2 3x3 1079 gb
ans =
"l ogical'

GraphBLAS operators, monoids, and semi-
rings

The C interface for SuiteSparse:GraphBLAS alows for arbitrary types and operators to be constructed.
However, the MATLAB interface to SuiteSparse:GraphBLAS isrestricted to pre-defined types and oper-
ators. a mere 11 types, 66 unary operators, 275 binary operators, 44 monoids, 16 select operators, and
1,865 semirings (1,040 of which are unique, since some binary operators are equivalent: 'min.logical’ and
‘& .logical' are the same thing, for example). The complex type and its binary operators, monoids, and
semirings will be added in the near future.

That gives you alot of toolsto create all kinds of interesting graph algorithms. In this GraphBLAS/demo
folder are three of them:

bfs gb % breadt h-first search
dnn_gb % sparse deep neural network (http://graphchall enge. org)
ms gb % maxi mal i ndependent set

See 'help gh.binopinfo' for alist of the binary operators, and 'help gb.monoidinfo' for the onesthat can be
used as the additive monoid in a semiring.

hel p gb. bi nopi nfo




GraphBLAS: graph algorithms
in the language of linear algebra

GB.BINOPINFO |ist the details of a G aphBLAS binary operator
Usage

gb. bi nopi nfo
gb. bi nopi nfo (op)
gb. bi nopi nfo (op, type)

For gb. bi nopi nfo(op), the op nust be a string of the form
"op.type', where 'op' is listed below. The second usage allows the
type to be omtted fromthe first argument, as just 'op'. This is
valid for all G aphBLAS operations, since the type defaults to the
type of the input matrices. However, gb.binopinfo does not have a
default type and thus one must be provided, either in the op as

gb. bi nopi nfo (' +.double"), or in the second argunment, gb.binopinfo
("+', 'double').

The MATLAB interface to G aphBLAS provides for 25 different binary
operators, each of which may be used with any of the 11 types, for
a total of 25*11 = 275 valid binary operators. Binary operators
are defined by a string of the form' 'op.type', or just "op'. In
the latter case, the type defaults to the type of the matrix inputs
to the G aphBLAS operati on.

The 6 conparator operators cone in two flavors. For the is*
operators, the result has the same type as the inputs, x and vy,
with 1 for true and 0 for false. For exanple isgt.double (pi, 3.0)
is the double value 1.0. For the second set of 6 operators (eq,
ne, gt, It, ge, le), the result is always |ogical (true or false).
In a semring, the type of the add nonoid nust exactly match the
type of the output of the multiply operator, and thus
"plus.iseq.double' is valid (counting how many terns are equal).
The " plus.eq.double' semring is valid, but not the same semring
since the '"plus' of 'plus.eq.double has a logical type and is thus
equi valent to 'or.eq.double'. The "or.eq" is true if any terns
are equal and false otherwise (it does not count the nunber of
terns that are equal).

The followi ng binary operators are avail able. My have equi val ent
synonyns, so that '1st' and 'first' both define the first(x,y) = X
operator.

operat or nanme(s) f(x,y) operator nanes(s) f(x,y)

|

|
1st first X | i seq X ==y
2nd second y | i sne X ~=y
mn m n(x,y) | i sgt X >y
max max(x,y) | islt X <y
+ pl us X+y | i sge X >=y
- m nus X-Yy | isle X <=y
rm nus y- X | == eq X ==
* times X*y | ~= ne X ~=y
/ div xly | > ot X >y
\ rdiv yl x | < It X <y




GraphBLAS: graph algorithms
in the language of linear algebra

| || or lor X |y | >= ge X >=y
& && and land x &y | <= le X <=y
xor | xor xor(x,y)

The three | ogical operators, lor, land, and |Ixor, also conme in 11
types. z = lor.double (x,y) tests the condition (x~=0) || (y~=0),
and returns the double value 1.0 if true, or 0.0 if false.

Exampl e:
% valid binary operators

gb. bi nopi nfo (' +. double")
gb. bi nopinfo (' 1st.int32")

% invalid binary operator (an error; this is a unary op):
gb. bi nopi nfo (' abs. double') ;
gb. bi nopi nfo generates an error for an invalid op, so user code can
test the validity of an op with the MATLAB try/catch nechani sm

See al so gb, gb.unopinfo, gb.semringinfo, gb.descriptorinfo.

hel p gb. nonoi di nfo

GB. MONO DINFO | i st the details of a G aphBLAS nonoid
Usage

gb. nonoi di nf o
gb. nonoi di nf o ( nonoi d)
gb. nonoi di nfo (nonoid, type)

For gb. nonoi di nfo(op), the op nmust be a string of the form
"op.type', where 'op' is listed below. The second usage allows the
type to be omtted fromthe first argument, as just 'op'. This is
valid for all G aphBLAS operations, since the type defaults to the
type of the input matrices. However, gb.nonoidi nfo does not have a
default type and thus one must be provided, either in the op as

gb. monoi dinfo (' +.double'), or in the second argunent,

gb. monoi dinfo ('+', 'double').

The MATLAB interface to G aphBLAS provides for 44 different
nonoids. The valid nonoids are: '+, '"*', '"max', and 'mn' for al
but the '"logical' type, and '|', '"& , 'xor', and 'ne' for the

"l ogical' type.

Exampl e:
% val i d nmonoi ds

gb. monoi dinfo (' +. doubl e')
gb. monoidinfo ('*.int32")

% i nval i d nonoi ds




GraphBLAS: graph algorithms
in the language of linear algebra

gb. monoi dinfo ('1st.int32") ;
gb. nonoi di nfo (' abs. double') ;

gb. nonoi di nfo generates an error for an invalid nonoid, so user
code can test the validity of an op with the MATLAB try/catch
mechani sm

See al so gb. unopi nfo, gb. bi nopi nfo, gb.sem ringinfo,
gb. descri ptori nfo.

Element-wise operations

Binary operators can be used in element-wise matrix operations, like C=A+B and C=A.*B. For the matrix
addition C=A+B, the pattern of C isthe set union of A and B, and the '+' operator is applied for entriesin
the intersection. Entriesin A but not B, or in B but not A, are assigned to C without using the operator.
The '+ operator is used for C=A+B but any operator can be used with gb.eadd.

A = gb (sprand (3, 3, 0.5)) ;
B = gb (sprand (3, 3, 0.5)) ;
Cl=A+8B
C2 = gb.eadd ('+', A B)
Cl-C2
Cl =
3x3 G aphBLAS double matrix, standard CSC, 7 entries
(1,1) 0. 666139
(3,1) 0. 735859
(1,2) 1.47841
(2,2) 0. 146938
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0.104226
Cc =
3x3 G aphBLAS double matrix, standard CSC, 7 entries
(1,1) 0. 666139
(3,1) 0. 735859
(1,2) 1.47841
(2,2) 0. 146938
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0.104226
ans =

10



GraphBLAS: graph algorithms
in the language of linear algebra

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1, 1)
(3,1)
(1,2)
(2,2)
(3,2)
(2,3)
(3,3)

[cNeoNeoNeoleNelNo)

Subtracting two matrices

A-B and gb.eadd (-', A, B) are not the same thing, since the '-' operator is not applied to an entry that is

in B but not A.

Cl = AB

C2 = gb.eadd ('-', A B)
Cl =

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1,1) -0. 666139
(3,1) - 0. 735859
(1,2) - 0. 334348
(2,2) -0. 146938

(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0. 104226

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1,1) 0. 666139
(3,1) 0. 735859
(1,2) - 0. 334348
(2,2) 0. 146938
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0. 104226

But these give the same result

c1
c2
1-

A-B
gb.eadd ('+', A gb.apply ('-', B))

Q
Qmum

Cl =

11



GraphBLAS: graph algorithms
in the language of linear algebra

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1,1) -0. 666139
(3,1) - 0. 735859
(1,2) - 0. 334348
(2,2) -0. 146938

(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0. 104226

Cc =
3x3 G aphBLAS double matrix, standard CSC, 7 entries
(1,1) -0. 666139
(3,1) - 0. 735859
(1,2) -0.334348
(2,2) -0.146938
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0.104226
ans =

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1, 1)
(3,1)
(1,2)
(2,2)
(3,2)
(2,3)
(3,3)

[cNeoNeoNeoleNelNo)

Element-wise 'multiplication’

For C = A*B, the result C is the set intersection of the pattern of A and B. The operator is applied to
entriesin both A and B. Entriesin A but not B, or B but not A, do not appear in the result C.

Cl=A*B

C =gb.emult ("*', A B)

C3 = double (A) .* double (B)
Cl =

3x3 G aphBLAS double matrix, standard CSC, 1 entries

(1,2) 0.518474

12



GraphBLAS: graph algorithms
in the language of linear algebra

Cc =
3x3 G aphBLAS double matrix, standard CSC, 1 entries
(1,2 0.518474

C3 =
(1,2 0.5185

Just as in gh.eadd, any operator can be used in gb.emult:

A
B
C = gbh.emult ("max', A B)

A =
3x3 G aphBLAS double matrix, standard CSC, 4 entries
(1,2 0. 572029
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0.104226
B =
3x3 G aphBLAS double matrix, standard CSC, 4 entries
(1,1) 0. 666139
(3,1) 0. 735859
(1,2 0. 906378
(2,2) 0. 146938
Cc =

3x3 G aphBLAS double matrix, standard CSC, 1 entries

(1,2) 0. 906378

Overloaded operators

Thefollowing operators all work as you would expect for any matrix. The matrices A and B can be Graph-
BLAS matrices, or MATLAB sparse or dense matrices, in any combination, or scalars where appropriate:

A+B A B A*B A*B A/B A\B A7“b Ab C=A(l,J)
A +A  ~A A A' AB AB bA Cl,))=A

13



GraphBLAS: graph algorithms
in the language of linear algebra

~=B A>B A==B A<=B A>=B A<B [A B] [A B]
A(1:end, 1: end)

For A”b, b must be a non-negative integer.

A
B

ClL = [A B

C2 = [doubl e(A) doubl e(B)] ;

assert (isequal (double (Cl), C2))
Cl = A2

C2 = double (A)"2

assert (isequal (double (Cl), C2))
Cl = A (1:2,2:end)

A = double (A ;

C = A (1:2,2:end) ;

assert (isequal (double (Cl1), C2))

A =
3x3 G aphBLAS double matrix, standard CSC, 4 entries
(1,2 0.572029
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0.104226
B =
3x3 G aphBLAS double matrix, standard CSC, 4 entries
(1,1) 0. 666139
(3,1) 0. 735859
(1,2 0. 906378
(2,2) 0. 146938
Cl =
3x6 G aphBLAS double matrix, standard CSC, 8 entries
(1,2 0. 572029
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0.104226
(1,4 0. 666139
(3,4) 0. 735859
(1,5) 0. 906378
(2,5) 0. 146938
Cl =

14



GraphBLAS: graph algorithms
in the language of linear algebra

3x3 G aphBLAS double matrix, standard CSC, 5 entries

(2,2) 0. 140946
(3,2) 0. 0590838
(1,3) 0. 142227
(2,3) 0. 0259144
(3,3) 0. 151809

c1

2x2 G aphBLAS double matrix, standard CSC, 2 entries

(1,1) 0. 572029
(2,2) 0. 248635

Overloaded functions

Many MATLAB built-in functions can be used with GraphBLA S matrices:

A few differences with the built-in functions:

S = sparse (Q
F=full (G
F=full (Gid)

disp (G level)
e = nnz (Q
X = nonzeros (G

% makes a copy of a gb matrix

% adds explicit zeros, so nunel (F)==nnz(F)

% adds explicit identity values to a gb matrix

% display a gb matrix G level=2 is the default.
% # of entries in a gb matrix G sonme can be zero
%all the entries of G sonme can be zero

In thelist below, the first set of Methods are overloaded built-in methods. They are used as-is on Graph-
BLAS matrices, such as C=abs(G). The Static methods are prefixed with "gh.", asin C = gb.apply ( ... ).

nmet hods gb

Met hods for class gb:

abs

al |

amd

and

any
bandwi dt h
ceil

col and
conpl ex
conj
ctranspose
di ag

di sp

di spl ay
dnperm

hor zcat l e single
intl1l6 | ength si ze

i nt 32 | ogi cal spar se

i nt 64 It spfun
int8 max spones

i sa mn sqrt

i sbanded m nus subsasgn
i sdi ag m di vi de subsi ndex
i sempty npower subsr ef
isfinite nr di vi de sum

i sfl oat ntimes symand

i shermtian ne synrcm

i si nf nnz times

i si nteger nonzer os transpose
i sl ogi cal norm tril

15



GraphBLAS: graph algorithms
in the language of linear algebra

doubl e ismatrix not triu
eig i snan nunel uint16
end i snuneric nzmax ui nt 32
eps i sreal or ui nt 64
eq i sscal ar pl us uint8
find i ssparse power um nus
fix i ssymetric pr od upl us
fl oor istril rdivide vert cat
full istriu real

gb i svector r epmat

ge kron r ound

ot | di vi de sign

Stati ¢ net hods:

apply enpty gbt ranspose subassi gn
assign emul t nmonoi di nfo t hr eads
bi nopi nfo expand mKm type

bui |l d extract nval s unopi nfo
chunk extracttupl es reduce vreduce
cl ear eye sel ect

descriptorinfo format sem ringinfo

eadd gbkron speye

Zeros are handled differently

Explicit zeros cannot be automatically dropped from a GraphBLAS matrix, like they are in MATLAB
sparse matrices. In a shortest-path problem, for example, an edge A(i,j) that is missing has an infinite
weight, (the monoid identity of min(x,y) is +inf). A zero edge weight A(i,j)=0 is very different from an
entry that is not present in A. However, if a GraphBLAS matrix is converted into a MATLAB sparse
matrix, explicit zeros are dropped, which is the convention for a MATLAB sparse matrix. They can also
be dropped from a GraphBLAS matrix using the gb.select method.

G=gb (mgic (3)) ;
G(1,1) =0 % (1,1) still appears as an explicit entry
A = double (Q %but it's dropped when converted to MATLAB sparse
H = gb.select ('nonzero', @ %drops the explicit zeros fromG
fprintf (‘nnz (@: % nnz (A): % nnz (H: %\n',

nnz (G, nnz (A, nnz (H) ;

3x3 G aphBLAS double matrix, standard CSC, 9 entries

(1, 1)
(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)

N~No ook, WO

16



GraphBLAS: graph algorithms
in the language of linear algebra

(3,3) 2

(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3,3)

NNOOOOTEF, AW

3x3 G aphBLAS double matrix, standard CSC, 8 entries

(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3,3)

NNOOOOITEF, AW

nnz (G: 9 nnz (A: 8 nnz (H): 8

Displaying contents of a GraphBLAS matrix

Unlike MATLAB, the default is to display just afew entries of a gb matrix. Here are all 100 entries of a
10-by-10 matrix, using a non-default disp(G,3):

G =gb (rand (10)) ;
% di spl ay everyt hing:
disp (G 3)

G =

10x10 GraphBLAS double matrix, standard CSC, 100 entries

(1,1) 0. 0342763
(2,1) 0. 17802
(3,1) 0. 887592
(4,1) 0. 889828
(5, 1) 0. 769149
(6, 1) 0. 00497062
(7,1) 0. 735693
(8,1) 0. 488349
(9,1) 0. 332817

(10, 1) 0.0273313

17



GraphBLAS: graph algorithms
in the language of linear algebra

(1,2) 0. 467212
(2,2) 0.796714
(3,2) 0. 849463
(4,2) 0. 965361
(5, 2) 0. 902248
(6,2) 0. 0363252
(7,2) 0. 708068
(8,2) 0. 322919
(9,2) 0. 700716
(10, 2) 0. 472957
(1,3) 0. 204363
(2,3) 0. 00931977
(3,3) 0. 565881
(4, 3) 0. 183435
(5, 3) 0. 00843818
(6, 3) 0. 284938
(7,3) 0. 706156
(8, 3) 0. 909475
(9, 3) 0. 84868
(10, 3) 0. 564605
(1,4) 0.075183
(2, 4) 0. 535293
(3, 4) 0. 072324
(4, 4) 0.515373
(5, 4) 0. 926149
(6, 4) 0. 949252
(7, 4) 0. 0478888
(8, 4) 0.523767
(9, 4) 0. 167203
(10, 4) 0. 28341
(1,5) 0. 122669
(2,5) 0. 441267
(3,5) 0.157113
(4,5) 0. 302479
(5, 5) 0. 758486
(6, 5) 0. 910563
(7,5) 0. 0246916
(8,5) 0. 232421
(9, 5) 0. 38018
(10, 5) 0. 677531
(1, 6) 0. 869074
(2, 6) 0. 471459
(3, 6) 0. 624929
(4, 6) 0. 987186
(5, 6) 0. 282885
(6, 6) 0. 843833
(7, 6) 0. 869597
(8, 6) 0. 308209
(9, 6) 0.201332

(10, 6) 0. 706603
(1,7) 0. 563222
(2,7) 0.575795
(3,7) 0. 056376
(4,7) 0. 73412

18



GraphBLAS: graph algorithms
in the language of linear algebra

(5,7) 0. 608022
(6,7) 0. 0400164
(7,7) 0. 540801
(8,7) 0. 023064
(9,7) 0. 165682
(10, 7) 0. 250393

(1,8) 0. 23865
(2,8) 0. 232033
(3, 8) 0. 303191
(4, 8) 0. 579934
(5, 8) 0. 267751
(6, 8) 0. 916376
(7,8) 0. 833499
(8, 8) 0. 978692
(9, 8) 0. 734445
(10, 8) 0. 102896
(1,9) 0. 353059
(2,9) 0. 738955
(3,9) 0. 57539
(4,9) 0. 751433
(5, 9) 0. 93256
(6,9) 0. 281622
(7,9) 0. 51302
(8,9) 0. 24406
(9,9) 0. 950086
(10, 9) 0. 303638
(1, 10) 0. 563593
(2, 10) 0. 705101
(3, 10) 0. 0604146
(4, 10) 0. 672065
(5, 10) 0. 359793
(6, 10) 0. 62931
(7, 10) 0.977758
(8, 10) 0. 394328
(9, 10) 0. 765651

(10, 10) 0. 457809

That was disp(G,3), so every entry was printed. It's alittle long, so the default is not to print everything.
With the default display (level = 2):
G

G =
10x10 GraphBLAS double matrix, standard CSC, 100 entries

(1,1) 0. 0342763
(2,1) 0. 17802

(3,1) 0. 887592
(4,1) 0. 889828
(5, 1) 0. 769149

19



GraphBLAS: graph algorithms
in the language of linear algebra

(6, 1) 0. 00497062
(7,1) 0. 735693
(8,1) 0. 488349
(9,1) 0. 332817
(10, 1) 0. 0273313

(1,2) 0. 467212
(2,2) 0.796714
(3,2) 0. 849463
(4,2) 0. 965361
(5, 2) 0. 902248
(6,2) 0. 0363252
(7,2) 0. 708068
(8,2) 0. 322919
(9,2) 0. 700716
(10, 2) 0. 472957
(1,3) 0. 204363
(2,3) 0. 00931977
(3,3) 0. 565881
(4, 3) 0. 183435
(5, 3) 0. 00843818
(6, 3) 0. 284938
(7,3) 0. 706156
(8, 3) 0. 909475
(9, 3) 0. 84868

(10, 3) 0. 564605

That was disp(G,2) or just display(G), which iswhat is printed by aMATLAB statement that doesn't have
atrailing semicolon. With level = 1, disp(G,1) givesjust aterse summary:

disp (G 1)

G =

10x10 GraphBLAS double matrix, standard CSC, 100 entries

Storing a matrix by row or by column

MATLAB stores its sparse matrices by column, refered to as 'standard CSC' in SuiteSparse: GraphBLAS.
In the CSC (compressed sparse column) format, each column of the matrix is stored as a list of entries,
with their value and row index. In the CSR (compressed sparse row) format, each row is stored as a list
of values and their column indices. GraphBLAS uses both CSC and CSR, and the two formats can be
intermixed arbitrarily. Inits C interface, the default format is CSR. However, for better compatibility with
MATLAB, this MATLAB interface for SuiteSparse:GraphBLAS uses CSC by default instead.

rng ('default') ;

gb. cl ear ; % clear all prior G aphBLAS settings
default_format_is = gb.format

C = sparse (rand (2))

G=gb (O

20



GraphBLAS: graph algorithms
in the language of linear algebra

gb.format (Q

default format _is =

"by col"
C =
(1,1) 0. 8147
(2,1) 0. 9058
(1,2 0.1270
(2,2) 0.9134
G =
2x2 GraphBLAS double matrix, standard CSC, 4 entries
(1, 1) 0. 814724
(2,1) 0. 905792
(1,2 0.126987
(2,2) 0.913376
ans =

"by col"

Many graph algorithmswork better in CSR format, with matrices stored by row. For example, itiscommon
to use A(i,)) for the edge (i,j), and many graph algorithms need to access the out-adjacencies of nodes,
which istherow A(i,;) for nodei. If the CSR format is desired, gb.format (‘by row') tells GraphBLAS to
create all subsequent matricesin the CSR format. Converting from aMATLAB sparse matrix (in standard
CSC format) takesalittle moretime (requiring atranspose), but subsequent graph algorithms can be faster.

gb.format ('by row) ;

default format _is = gb.format

G=gb (O

The format _for Gis = gh.format (Q

default format _is _now back to = gb.format (' by col"')

H=gb (O
The format for His = gb.format (H)
But_Gis_still = gb.format (Q

err = norm(HG1)

default format _is =

"by col"

21



GraphBLAS: graph algorithms
in the language of linear algebra

2x2 G aphBLAS double matrix, standard CSR, 4 entries
(1,1) 0.814724
(1,2 0.126987
(2,1) 0. 905792
(2,2) 0. 913376

The format _for Gis =

"by row

default format_is_now back to =

"by col"

2x2 G aphBLAS double matrix, standard CSC, 4 entries
(1,1) 0.814724
(2,1) 0. 905792
(1,2 0.126987
(2,2) 0. 913376

The format _for His =

"by col"

But _Gis still =

"by row

Hypersparse matrices

SuiteSparse:GraphBLAS can use two kinds of sparse matrix data structures: standard and hypersparse, for
both CSC and CSR formats. In the standard CSC format used in MATLAB, an m-by-n matrix A takes O(n
+nnz(A)) space. MATLAB can create huge column vectors, but not huge matrices (when n is huge).

cl ear al

[c, huge] = conputer ;

C = sparse (huge, 1) % MATLAB can create a huge-by-1 sparse colum
try

22



GraphBLAS: graph algorithms
in the language of linear algebra

C = sparse (huge, huge) % but this fails
catch ne

error_expected = ne
end
C =

Al zero sparse: 281474976710655x1

error_expected =
MException with properties:

identifier: 'MATLAB: array: Si zeLi m t Exceeded
nessage: ' Requested 281474976710655x281474976710655

(2097152. 0GB) array exceeds nmaxi num array size preference. Creation
of arrays greater than this Iimt nay take a long tinme and cause
MATLAB to becone unresponsive. See <a href="nmatl ab: hel pvi ew([ docr oot
"/ mat| ab/ hel ptargets. map'], 'matlab_env_workspace prefs')">array size
limt</a> or preference panel for nore infornation.'

cause: {0x1 cell}

stack: [4x1 struct]

In aGraphBLAS hypersparse matrix, an m-by-n matrix A takes only O(nnz(A)) space. The difference can
be huge if nnz (A) << n.

G = gb (huge, 1) % no problem for G aphBLAS
H = gb (huge, huge) %this works in GraphBLAS too
G =
281474976710655x1 GraphBLAS double matrix, standard CSC, 0 entries
H =

281474976710655%x281474976710655 G aphBLAS doubl e nmatri x,
hypersparse CSC, 0 entries

Operations on huge hypersparse matrices are very fast; no component of the time or space complexity
is Omega(n).

randperm (huge, 2) ;

| =

J = randperm (huge, 2) ;

H(l,J) =42 ; % add 4 nonzeros to randomlocations in H
H=(H * 2) ; % transpose H and double the entries

K = gb.expand (pi, H ; %K = pi * spones (H)

H=H+K % add pi to each entry in H

nurel (H %this is huge”2, a really big nunber

23



GraphBLAS: graph algorithms
in the language of linear algebra

281474976710655x281474976710655 G aphBLAS doubl e nmatri x,
hypersparse CSC, 4 entries

(78390279669562, 27455183225557) 87.1416
(153933462881710, 27455183225557) 87.1416

(78390279669562, 177993304104065) 87.1416
(153933462881710, 177993304104065) 87.1416

ans =

7.9228e+28

All of these matrices take very little memory space:

whos C G H K

Nane Si ze Bytes d ass
Attributes

C 281474976710655x1 32 doubl e
spar se

G 281474976710655x1 989 gb

H 281474976710655x281474976710655 1244 gb

K 281474976710655x281474976710655 1244 gb

The mask and accumulator

When not used in overloaded operators or built-in functions, many GraphBLAS methods of the form
gh.method ( ... ) can optionally use a mask and/or an accumulator operator. If the accumulator is'+' in
gb.mxm, for example, then C = C + A*B is computed. The mask acts much likelogical indexingin MAT-
LAB. With alogical mask matrix M, C<M>=A*B allows only part of C to be assigned. If M(i,j) is true,
then C(i,j) can be modified. If false, then C(i,j) is not modified.

For example, to set al valuesin C that are greater than 0.5 to 3, use:

C = rand (3)
Cl = gh.assign (C, C> 0.5, 3) % in G aphBLAS
cC(C>.5) =3 % in MATLAB

err = norm(C- Cl, 1)

0. 9575 0. 9706 0. 8003
0. 9649 0. 9572 0. 1419
0. 1576 0. 4854 0.4218

24



GraphBLAS: graph algorithms
in the language of linear algebra

c1

3x3 G aphBLAS double matrix, standard CSC, 9 entries

(1,1) 3
(2,1) 3
(3,1) 0. 157613
(1,2) 3
(2,2) 3
(3,2) 0
(1,3) 3
(2,3) 0
(3,3) 0

. 485376

. 141886
. 421761

3. 0000 3. 0000 3. 0000
3. 0000 3. 0000 0. 1419
0. 1576 0. 4854 0.4218

The descriptor

Most GraphBLAS functions of the form gh.method ( ... ) take an optional last argument, called the de-
scriptor. ItisaMATLAB struct that can modify the computations performed by the method. 'help gb.de-
scriptorinfo’ gives al the details. The following is a short summary of the primary settings:

d.out = 'default’ or 'replace, clears C after the accum op is used.
d.mask = 'default’ or ‘complement’, to use M or ~M as the mask matrix.
d.in0 = 'default’ or 'transpose, to transpose A for C=A*B, C=A+B, etc.
d.inl = 'default’ or 'transpose, to transpose B for C=A*B, C=A+B, etc.
d.kind = 'default’, 'gb', 'sparse’, or 'full’; the output of gb.method.

A = sparse (rand (2))

B = sparse (rand (2))

Cl = A*B;

c2 ghbh.nxm (' +.*", A B, struct ('in0, "transpose'))
err = norm (Cl-C2, 1)

25



GraphBLAS: graph algorithms
in the language of linear algebra

Integer arithmetic is different in GraphBLAS

MATLAB supports integer arithmetic on its full matrices, using int8, int16, int32, int64, uint8, uint16,
uint32, or uinté4 data types. None of these integer data types can be used to construct aMATLAB sparse
matrix, which can only be double, double complex, or logical. Furthermore, C=A*B is not defined for
integer typesin MATLAB, except when A and/or B are scalars.

GraphBLAS supports al of those types for its sparse matrices (except for complex, which will be added
in the future). All operations are supported, including C=A*B when A or B are any integer type, for all
1,865 semirings (1,040 of which are unique).

However, integer arithmetic differsin GraphBLAS and MATLAB. In MATLAB, integer values saturate
if they exceed their maximum value. In GraphBLAS, integer operators act in amodular fashion. The latter
is essential when computing C=A*B over a semiring. A saturating integer operator cannot be used as a
monoid since it is not associative.

The C API for GraphBLAS allows for the creation of arbitrary user-defined types, so it would be possible
to create different binary operatorsto allow element-wise integer operations to saturate, perhaps:

C = gb. eadd(' +saturate', A B)

Thiswould require an extension to thisMATLAB interface.

C=uint8 (magic (3)) ;
G=gb (O ;
Cl =C=* 40
C2 =G* 40
C3 = double (@ * 40 ;

S = double (Cl < 255) ;
assert (isequal (double (Cl).*S, double (C2).*S))
assert (isequal (nonzeros (C2), double (mobd (nonzeros (C3), 256))))
Cl =
3x3 uint8 matrix
255 40 240

120 200 255
160 255 80

3x3 G aphBLAS uint8_t matrix, standard CSC, 9 entries

(1,1) 64
(2,1) 120
(3,1 160
(1,2) 40
(2,2) 200
(3,2) 104

26



GraphBLAS: graph algorithms
in the language of linear algebra

(1,3) 240
(2,3) 24
(3,3) 80

An example graph algorithm: breadth-first
search

The breadth-first search of a graph finds all nodes reachable from the source node, and their level, v.
v=bfs gb(A,s) or v=bfs matlab(A,s) compute the same thing, but bfs_gb uses GraphBLAS matrices and
operations, while bfs_matlab uses pure MATLAB operations. v is defined as v(s) = 1 for the source node,
v(i) = 2 for nodes adjacent to the source, and so on.

clear all

rng ('default') ;

n = le5 ;

A = logical (sprandn (n, n, 1le-3)) ;

tic
vl = bfs gb (A 1) ;
gb time = toc ;

tic
v2 = bfs_matlab (A 1) ;
matlab time = toc ;

assert (isequal (full (double (v1)), v2))

fprintf ('\nnodes reached: % of %l\n', nnz (v2), n) ;

fprintf (' GaphBLAS tine: % sec\n', gb time) ;

fprintf (' MATLAB tine: % sec\n', matlab_tine) ;

fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',
matlab time / gb_tinme) ;

nodes reached: 100000 of 100000
GraphBLAS tine: 0.358829 sec

MATLAB ti me: 1. 09768 sec

Speedup of G aphBLAS over MATLAB: 3.05906

Example graph algorithm: Luby's method in
GraphBLAS

Themis_gb.m function isvariant of Luby's randomized algorithm [Luby 1985]. It isaparallel method for
finding an maximal independent set of nodes, where no two nodes are adjacent. See the GraphBLAS/de-
mo/mis_gb.m function for details. The graph must be symmetric with a zero-free diagonal, so A is sym-
metrized first and any diagonal entries are removed.

gb (A
AA
tril (A -1)
AA

>>>>
TR TR

27



GraphBLAS: graph algorithms
in the language of linear algebra

tic

s =ms_gb (A

toc

fprintf ('# nodes in the graph: %\n', size (A 1))

fprintf ('# edges: : %\n', nnz (A [/ 2) ;

fprintf ('size of maxi mal independent set found: %g\n',
full (double (sum(s))))

% make sure it's independent
p=~find (s ==1)
S=A(p.p) ;

assert (nnz (S) == 0)

% make sure it's naximal

notp = find (s == 0)

S = A (notp, p) ;

deg = gb.vreduce (' +.int64", S)
assert (logical (all (deg > 0)))

El apsed tinme is 0.291886 seconds.

# nodes in the graph: 100000

# edges: : 9.9899e+06

size of maxi mal independent set found: 2811

Sparse deep neural network

The 2019 MIT GraphChallenge (see http://graphchallenge.org) is to solve a set of large sparse deep neur-
al network problems. In this demo, the MATLAB reference solution is compared with a solution using
GraphBLAS, for arandomly constructed neural network. See the dnn_gb.m and dnn_matlab.m functions
for details.

clear all

rng ('default') ;

nl ayers = 16 ;

nneurons = 4096 ;

nf eat ures = 30000 ;

fprintf ('# |ayers: %I\ n', nlayers) ;
fprintf ('# neurons: % l\n', nneurons) ;
fprintf ('# features: %\ n', nfeatures) ;

tic

YO0 = sprand (nfeatures, nneurons, 0.1) ;

for layer = 1:nlayers
W{l ayer} = sprand (nneurons, nneurons, 0.01) * 0.2 ;
bias {layer} = -0.2 * ones (1, nneurons) ;

end

t_setup = toc ;

fprintf ('construct problemtine: % sec\n', t_setup) ;

# | ayers: 16

# neurons: 4096

# features: 30000

construct problemtine: 7.80411 sec

28


http://graphchallenge.org

GraphBLAS: graph algorithms
in the language of linear algebra

Solving the sparse deep neural network prob-
lem with GraphbLAS

Please wait ...

tic

YL = dnn_gb (W bias, Y0) ;

gb time = toc ;

fprintf ("total tinme in G aphBLAS: %y sec\n', gb_tinme) ;

setup tinme: 0.21823 sec

| ayer: 1, nnz (Y) 52031839, tine 1.68859 sec
| ayer: 2, nnz (Y) 56297437, tine 4.49248 sec
| ayer: 3, nnz (Y) 18532210, tine 4.48072 sec
| ayer: 4, nnz (Y) 6388296, tine 1.5336 sec

| ayer: 5, nnz (Y) 4773907, tine 0.31003 sec
| ayer: 6, nnz (Y) 4429486, tine 0.173388 sec
| ayer: 7, nnz (Y) 4350722, tine 0.139635 sec
| ayer: 8, nnz (Y) 4329698, tine 0.132609 sec
| ayer: 9, nnz (Y) 4320222, tine 0.136624 sec
| ayer: 10, nnz (Y) 4318770, tinme 0.137055 sec
| ayer: 11, nnz (Y) 4317184, tinme 0.136621 sec
| ayer: 12, nnz (Y) 4317184, tinme 0.132114 sec
| ayer: 13, nnz (Y) 4317184, tinme 0.138919 sec
| ayer: 14, nnz (Y) 4317184, tinme 0.134094 sec
| ayer: 15, nnz (Y) 4317184, tinme 0.201019 sec
| ayer: 16, nnz (Y) 4317184, tinme 0.140587 sec
total time in GaphBLAS. 14. 3421 sec

Solving the sparse deep neural network prob-
lem with MATLAB

Please wait ...

tic

Y2 = dnn_matl ab (W bias, YO0)

matl ab tine = toc

fprintf ("total tinme in MATLAB: % sec\n', matlab_tinme)

fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',
matlab_time / gb_tine)

err = norm (Y1-Y2,1)

| ayer: 1, nnz (Y) 52031843, tine 23.398 sec

| ayer: 2, nnz (Y) 56297445, tinme 26.5699 sec
| ayer: 3, nnz (Y) 18532218, tine 30.4702 sec
| ayer: 4, nnz (Y) 6388296, time 17.2698 sec
| ayer: 5, nnz (Y) 4773911, tinme 3.76852 sec
| ayer: 6, nnz (Y) 4429487, tinme 1.66506 sec
| ayer: 7, nnz (Y) 4350725, tinme 1.41032 sec
| ayer: 8, nnz (Y) 4329700, tinme 2.15447 sec

29



GraphBLAS: graph algorithms
in the language of linear algebra

| ayer: 9, nnz (Y) 4320224, tinme 2.60775 sec
| ayer: 10, nnz (Y) 4318775, time 2.74087 sec
| ayer: 11, nnz (Y) 4317184, time 2.75234 sec
| ayer: 12, nnz (Y) 4317184, time 2.66811 sec
| ayer: 13, nnz (Y) 4317184, time 2.92539 sec
| ayer: 14, nnz (Y) 4317184, time 2.89839 sec
| ayer: 15, nnz (Y) 4317184, time 2.84681 sec
| ayer: 16, nnz (Y) 4317184, time 3.01285 sec
total tinme in MATLAB: 129. 166 sec

Speedup of G aphBLAS over MATLAB: 9.00606

err =

Extreme performance differences between
GraphBLAS and MATLAB.

The GraphBLAS operations used so far are perhaps 2x to 50x faster than the corresponding MATLAB
operations, depending on how many cores your computer has. To run ademo illustrating a 500x or more
speedup versus MATLAB, run this demo:

gbdenn2

It will illustrate an assignment C(1,J)=A that can take under a second in GraphBLAS but several minutes
in MATLAB. To make the comparsion even more dramatic, try:

gbdenon2 (20000)

assuming you have enough memory. The gbdemo2 is not part of this demo since it can take along time;
it tries arange of problem sizes, and each one takes several minutesin MATLAB,

Limitations and their future solutions

The MATLAB interface for SuiteSparse:GraphBLAS is awork-in-progress. It has some limitations, most
of which will be resolved over time.

(1) Nonblocking mode:

GraphBLAS has a 'non-blocking' mode, in which operations can be left pending and completed later.
SuiteSparse:GraphBLAS uses the non-blocking mode to speed up a sequence of assignment operations,
such as C(1,J)=A. However, in its MATLAB interface, this would require a MATLAB mexFunction to
modify itsinputs. That breaks the MATLAB API standard, so it cannot be safely done. As aresult, using
GraphBLAS viaits MATLAB interface can be slower than when using its C API. This restriction would
not be alimitation if GraphBLAS were to be incorporated into MATLAB itself, but thereislikely no way
to do thisin a mexFunction interface to GraphBLAS.

(2) Complex matrices:

GraphBLAS can operate on matrices with arbitrary user-defined types and operators. The only constraint
isthat the type be afixed sized typedef that can be copied with the ANSI C memcpy; variable-sized types
are not yet supported. However, in this MATLAB interface, SuiteSparse:GraphBLAS has access to only

30



GraphBLAS: graph algorithms
in the language of linear algebra

predefined types, operators, and semirings. Complex types and operators will be added to this MATLAB
interface in the future. They already appear in the C version of GraphBLAS, with user-defined operators
in GraphBL A S/Demo/Source/usercomplex.c.

(3) Integer element-wise operations:

Integer operationsin MATLAB saturate, so that uint8(255)+1is255. To alow for integer monoids, Graph-
BLAS uses modular arithmetic instead. Thisisthe only way that C=A*B can be defined for integer semi-
rings. However, saturating integer operators could be added in the future, so that element- wise integer op-
erations on GraphBLAS sparse integer matrices could work just the same astheir MATLAB counterparts.

So in the future, you could perhaps write this, for both sparse and dense integer matrices A and B:
C = gb.eadd (' +saturate.int8 , A B)

to compute the same thing as C=A+B in MATLAB for its full int8 matrices. % Note that MATLAB can
do this only for dense integer matrices, since it doesn't support sparse integer matrices.

(4) Faster methods:

Most methodsin thisMATLAB interface are based on efficient parallel C functionsin GraphBLAS itself,
and aretypically asfast or faster than the equivalent built-in operators and functionsin MATLAB.

There are few notable exceptions, the most important one being horzcat and vertcat, used for [A B] and
[A;B] when either A or B are GraphBLAS matrices.

Other methods that could be faster in the future include bandwidth, istriu, istril, eps, ceil, floor, round,
fix, isfinite, isinf, isnan, spfun, and A.*B. These methods are currently implemented in m-functions, not
in efficient parallel C functions.

cl ear

A = sparse (rand (2000)) ;
B = sparse (rand (2000)) ;
tic

Cl =[AB ;

matlab time = toc ;
A=gb (A ;
B =gb (B ;
ti

G =[AB ;
gb time = toc ;

o I

err = norm (Cl-C2,1)
fprintf ('\nMATLAB: % sec, G aphBLAS: % sec\n',
matlab tinme, gb tine) ;
if (gh_time > matlab tine)
fprintf (' GaphBLAS is slower by a factor of %g\n',
gb time / matlab tinme) ;
end

31



GraphBLAS: graph algorithms
in the language of linear algebra

MATLAB: 0.068433 sec, G aphBLAS: 0.21258 sec
GraphBLAS is slower by a factor of 3.1064

(5) Linear indexing:

If A isan m-by-n 2D MATLAB matrix, with n > 1, A(:) is a column vector of length m*n. The index
operation A(i) accessestheith entry in thevector A(:). Thisiscalled linear indexingin MATLAB. It isnot
yet available for GraphBLAS matrices in this MATLAB interface to GraphBLAS, but it could be added
in the future.

(6) Implicit binary expansion

In MATLAB C=A+B where A is m-by-n and B is a 1-by-n row vector implicitly expands B to a matrix,
computing C(i,j)=A(i,j)+B(j). Thisimplicit expansion is not yet suported in GraphBLAS with C=A+B.
However, it can be done with C = gb.mxm ('+.+', A, diag(gh(B))). That's an nice example of the power
of semirings, but it's not immediately obvious, and not as clear a syntax as C=A+B. The GraphBLAS/de-
mo/dnn_gb.m function uses this 'plus.plus semiring to apply the bias to each neuron.

A
B
c1

magi ¢ (4)

1000: 1000: 4000

A+ B

gh.nxm (' +.+', A, diag (gb (B)))
err = norm (Cl-C2, 1)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
B =
1000 2000 3000 4000
cl1 =
1016 2002 3003 4013
1005 2011 3010 4008
1009 2007 3006 4012
1004 2014 3015 4001
Cc =

4x4 G aphBLAS double matrix, standard CSC, 16 entries

(1,1) 1016
(2,1) 1005
(3,1) 1009
(4,1) 1004

32



GraphBLAS: graph algorithms
in the language of linear algebra

(1,2) 2002
(2,2) 2011
(3,2) 2007
(4,2) 2014
(1,3) 3003
(2,3) 3010
(3,3) 3006
(4, 3) 3015
(1, 4) 4013
(2, 4) 4008
(3, 4) 4012
(4, 4) 4001

(7) Logica indexing in subsindex and subsasgn:

The mask in GraphBLAS acts much like logical indexingin MATLAB, but it isnot quite the same. MAT-
LAB logical indexing takes the form:

C(M =A(M
which computes the same thing as the GraphBLAS statement:
C =gb.assign (C M A

The gb.assign statement computes C(M)=A(M), and it is vastly faster than C(M)=A(M), even if the time
to convert the gb matrix back to aMATLAB sparse matrix is included.

However, the syntax differs. The overloaded subsasgn operator for C(M)=A requires A(M) to be computed
first, which becomes a 1D vector of length equal to the number of entriesin M. The gb.assign function
requires the original A, not the linear vector A(M). As aresult, the C(M) = ... syntax is not yet supported
for GraphBLAS matrices. Until | resolve this syntax issue, use C = gh.assign (C,M,A) instead.

Onmy 4-core Dell XPS-13 |aptop, C=gh.assign(C,M,A) isabout 24,000x faster than C(M)=A(M) in MAT-
LAB R2019a, so the extra syntax iswell worth it. First, in GraphBLAS:

cl ear

n = 4000 ;

tic

C = sprand (n, n, 0.1) ;

A =100 * sprand (n, n, 0.1) ;
M= (C>0.5) ;

t_setup = toc ;

fprintf ('nnz(C: %, nnz(M: %, nnz(A): %\n',
nnz(C, nnz(M, nnz(A)) ;

fprintf ("\nsetup tine: % sec\n', t_setup) ;

% even add in the tine to convert ClL froma G aphBLAS
%matrix to a MATLAB sparse matrix
tic

33



GraphBLAS: graph algorithms
in the language of linear algebra

Cl = gh.assign (C, M A

Cl = double (C1)

gb_time =toc ;

fprintf ("\nG aphBLAS tine: % sec\n', gb_tine)

nnz(C): 1.52283e+06, nnz(M: 760303, nnz(A): 1.5225e+06
setup tine: 1.30472 sec

G aphBLAS tinme: 0.012123 sec
Please wait, this will take about 10 minutes or so ...

—

Cc
(M =AM
t

lab_time = toc ;

gﬂ

fprintf ("\nGaphBLAS tinme: % sec\n', gb_tinme) ;

fprintf (' MATLAB tine: % sec\n', matlab_tinme) ;

fprintf ('Speedup of G aphBLAS over MATLAB: %g\n',
matlab_time / gb_tinme) ;

% GraphBLAS conputes the exact sane result:

assert (isequal (C1, Q)
Cl-C

GraphBLAS tine: 0.012123 sec
MATLAB ti ne: 1154. 17 sec
Speedup of G aphBLAS over MATLAB: 95204.7

ans =

Al zero sparse: 4000x4000

(8) Other features are not yet in place, such as:

S = gparse (i,j,X) alows either i or j, and X, to be scalars, which are implicitly expanded. Thisis not yet
supported by gb.build.

Many built-in functions work with GraphBLAS matrices unmodified, but sometimes things can break in
odd ways. The gmres function is a built-in m-file, and works fine if given GraphBLAS matrices:

A = sparse (rand (4)) ;
b = sparse (rand (4,1)) ;
x = gmes (A Db)

resid = A*x-b

x = gnres (gh(A), gb(b))

resid = A*x-b

gnres converged at iteration 4 to a solution with relative residual O.

X =




GraphBLAS: graph algorithms
in the language of linear algebra

0. 0262
- 0. 2499
1.5354
- 0. 4965

resid =
1. 0e-15 *

-0. 5551
-0. 2776
0. 3331
0. 0555

gnres converged at iteration 4 to a solution with relative residual O.

0. 0262
- 0. 2499
1.5354
- 0. 4965

1. O0e-15 *

0. 1110
- 0. 0555
0. 6661
0. 1388

Both of the following uses of minres (A,b) fail to converge because A is not symmetric, as the method
requires. Both failures are correctly reported, and both the MATLAB version and the GraphBLAS version
return the same incorrect vector x. So far so good.

X = mnres (A D)
[x, flag] = minres (gb(A), gb(b))

mnres stopped at iteration 4 wthout converging to the desired
t ol erance le-06

because the maxi mum nunber of iterations was reached.

The iterate returned (nunber 4) has relative residual 0.28.

X =

0. 8201
0. 0164
0. 4958
-0. 2511

35



GraphBLAS: graph algorithms
in the language of linear algebra

X =
4x1 G aphBLAS double matrix, standard CSC, 4 entries
(1,1) 0. 820129
(2,1) 0. 0164381
(3,1) 0. 495776
(4,1) - 0. 251055
flag =
1

But leaving off the flag output argument causes minresto try to print an error using an internal MATLAB
error message utility (see 'help message'). The error message fails in an obscure way, perhaps because

sprintf ("%, Xx)
failsif x isa GraphBLAS scalar. Overloading sprintf and fprintf might fix this.
Xx = mnres (gb(A), gb(b))

Array with 2 dinmensions not conpatible with shape of
matri x: :typed_array<doubl e>

The error cannot be caught with 'try/catch’ so it would terminate this demo, and thus is not attempted
here. The MATLAB interface to GraphBLAS is a work-in-progress. My goal isto enable all MATLAB
operations that work on MATLAB sparse matrices to also work on GraphBLAS sparse matrices, but not
all methods are available yet, such as x=minres(G,b) for a GraphBLAS matrix G.

GraphBLAS operations

In addition to the overloaded operators (such as C=A*B) and overloaded functions (such as L=tril(A)),
GraphBL A Sa so hasmethods of theform gh.method, listed on the next page. M ost of them take an optional
input matrix Cin, which is the initial value of the matrix C for the expression below, an optional mask
matrix M, and an optional accumulator operator.

C<#M repl ace> = accum (C, T)

In the above expression, #M is either empty (no mask), M (with a mask matrix) or ~M (with a comple-
mented mask matrix), as determined by the descriptor. ‘replace’ can be used to clear C after it isused in
accum(C,T) but beforeit is assigned with C<...> = Z, where Z=accum(C,T). The matrix T isthe result of
some operation, such as T=A*B for gb.mxm, or T=0p(A,B) for gh.eadd.

A short summary of these gb.methods is on the next page.

List of gb.methods

gb. cl ear cl ear GraphBLAS wor kspace and settings
gb. descriptorinfo (d) list properties of a descriptor d
gb. unopi nfo (op, type) list properties of a unary operator

36



GraphBLAS: graph algorithms
in the language of linear algebra

gb. bi nopi nfo (op, type) list properties of a binary operator

gb. monoi di nfo (op, type) list properties of a nonoid
gb.semringinfo (s, type) list properties of a semring

t = gb.threads (t) set/get # of threads to use in G aphBLAS
¢ = gb.chunk (c) set/get chunk size to use in G aphBLAS

e = gb.nvals (A nunber of entries in a matrix

G = gb.enmpty (m n) return an enmpty G aphBLAS matrix

s = gh.type (X get the type of a MATLAB or gb matrix X

f = gb.format (f) set/get matrix format to use in G aphBLAS
C = expand (scalar, S) expand a scalar (C = scal ar*spones(S))
G=gb.build (I, J, X, m n, dup, type, d) build a matrix
[1,3,X] = gb.extracttuples (A, d) extract all entries
C=gb.nxm (Cn, M accum seniring, A B, d) matrix multiply

C = gb.select (Cin, M accum op, A, thunk, d) select entries

C = gh.assign (Cin, M accum A |, J, d) assign, like C(1,J)=A
C = gb.subassign (CGn, M accum A 1, J, d) assign, different M
C = gb.vreduce (Cn, M accum op, A d) reduce to vector

C = gb.reduce (Cin, accum op, A d) reduce to scal ar

C = gb.gbkron (Cin, M accum op, A B, d) Kr onecker product

C = gb.gbtranspose (Cin, M accum A, d) transpose

C = gb.eadd (Cn, M accum op, A B, d) el ement -wi se addition
C=gb.emult (Gn, M accum op, A B, d) el ement-wi se mult.

C = gh.apply (Gn, M accum op, A d) apply unary operator
C = gh.extract (Cn, M accum A |, J, d) extract, like C=A(I,J)

For more details type 'help graphblas' or 'help gb'.

Tim Davis, Texas A&M University, http://faculty.cse.tamu.edu/davis See also sparse, doc sparse, and
https://twitter.com/DocSparse

Published with MATLAB® R2018a

37


http://faculty.cse.tamu.edu/davis

	Table of Contents
	GraphBLAS: faster and more general sparse matrices for MATLAB
	Sparse integer matrices
	Sparse single-precision matrices
	Mixing MATLAB and GraphBLAS matrices
	Faster matrix operations
	A wide range of semirings
	The max.plus tropical semiring
	A boolean semiring
	GraphBLAS operators, monoids, and semirings
	Element-wise operations
	Subtracting two matrices
	Element-wise 'multiplication'
	Overloaded operators
	Overloaded functions
	Zeros are handled differently
	Displaying contents of a GraphBLAS matrix
	Storing a matrix by row or by column
	Hypersparse matrices
	The mask and accumulator
	The descriptor
	Integer arithmetic is different in GraphBLAS
	An example graph algorithm: breadth-first search
	Example graph algorithm: Luby's method in GraphBLAS
	Sparse deep neural network
	Solving the sparse deep neural network problem with GraphbLAS
	Solving the sparse deep neural network problem with MATLAB
	Extreme performance differences between GraphBLAS and MATLAB.
	Limitations and their future solutions
	GraphBLAS operations
	List of gb.methods

